
Installing Black Duck SCA
using Kubernetes and
OpenShift
Black Duck SCA 2025.4.1

Black Duck

Copyright ©2025 by Black Duck.

All rights reserved. All use of this documentation is subject to the license agreement between Black Duck
Software, Inc. and the licensee. No part of the contents of this document may be reproduced or transmitted
in any form or by any means without the prior written permission of Black Duck Software, Inc.

Black Duck, Know Your Code, and the Black Duck logo are registered trademarks of Black Duck Software,
Inc. in the United States and other jurisdictions. Black Duck Code Center, Black Duck Code Sight, Black
Duck Hub, Black Duck Protex, and Black Duck Suite are trademarks of Black Duck Software, Inc. All other
trademarks or registered trademarks are the sole property of their respective owners.

29-05-2025

2 •

Contents

Contents
Preface...5

Black Duck documentation.. 5
Customer support.. 5
Black Duck Community... 6
Training...6
Black Duck Statement on Inclusivity and Diversity... 6
Black Duck Security Commitments... 7

1. Installing Black Duck using Kubernetes and OpenShift......................8

2. Hardware requirements...9

3. PostgreSQL versions.. 10
General Migration Process.. 10

4. Installing Black Duck using Helm..11
Black Duck helm chart.. 11
Getting started... 11
Configuring your Black Duck instance.. 12
Exposing the Black Duck UI..13
Installing the chart... 14
Uninstalling the chart... 15
Upgrading the chart... 15
Configuration parameters.. 15

Common configuration.. 16
Authentication pod configuration...18
Binary scanner pod configuration... 19
BOM engine pod configuration... 20
CFSSL pod configuration..20
Datadog pod configuration..21
Documentation pod configuration... 21
Integration pod configuration.. 22
Job runner pod configuration..22
Logstash pod configuration...23
Match engine pod configuration... 24
PostgreSQL pod configuration..24
PostgreSQL readiness init container configuration.. 26
PostgreSQL upgrade job configuration.. 26
RabbitMQ pod configuration... 26
Redis pod configuration.. 27
Registration pod configuration.. 27
Scan pod configuration... 28
Storage pod configuration...29
Webapp pod configuration..31

Installing Black Duck SCA using Kubernetes and OpenShift • 3

Contents

Webserver pod configuration.. 32

5. Administrative Tasks... 33
Configuring secrets encryption in Kubernetes.. 33
Generating seeds in Kubernetes...34
Configuring a backup seed..34
Managing secret rotation in Kubernetes... 35
Passing external database credentials via Kubernetes secret..36
Configuring custom volumes for Blackduck Storage...36
Configuring jobrunner thread pools... 40
Configuring readiness probes..40
Configuring HUB_MAX_MEMORY setting.. 40
Migrating on OpenShift with Helm.. 41
Provisioning JWT public/private key pairs...41
Enabling SCM Integration..42
Configuring mTLS on an external database... 42
Transitioning from Synopsysctl to helm chart deployments.. 44

4 • Installing Black Duck SCA using Kubernetes and OpenShift

Preface • Black Duck documentation

Preface

Black Duck documentation
The documentation for Black Duck consists of online help and these documents:

Title File Description

Release Notes release_notes.pdf Contains information about the new and improved
features, resolved issues, and known issues in the
current and previous releases.

Installing Black
Duck using
Docker Swarm

install_swarm.pdf Contains information about installing and upgrading
Black Duck using Docker Swarm.

Installing Black
Duck using
Kubernetes

install_kubernetes.pdf Contains information about installing and upgrading
Black Duck using Kubernetes.

Installing Black
Duck using
OpenShift

install_openshift.pdf Contains information about installing and upgrading
Black Duck using OpenShift.

Getting Started getting_started.pdf Provides first-time users with information on using
Black Duck.

Scanning Best
Practices

scanning_best_practices.pdf Provides best practices for scanning.

Getting Started
with the SDK

getting_started_sdk.pdf Contains overview information and a sample use
case.

Report
Database

report_db.pdf Contains information on using the report database.

User Guide user_guide.pdf Contains information on using Black Duck's UI.

The installation methods for installing Black Duck software in a Kubernetes or OpenShift environment are
Helm. Click the following links to view the documentation.

• Helm is a package manager for Kubernetes that you can use to install Black Duck. Black Duck supports
Helm3 and the minimum version of Kubernetes is 1.13.

Black Duck integration documentation is available on:

• https://sig-product-docs.blackduck.com/bundle/detect/page/integrations/integrations.html

• https://documentation.blackduck.com/category/cicd_integrations

Customer support
If you have any problems with the software or the documentation, please contact Black Duck Customer
Support:

Installing Black Duck SCA using Kubernetes and OpenShift • 5

https://github.com/blackducksoftware/hub/tree/master/kubernetes/blackduck
https://documentation.blackduck.com/bundle/detect/page/integrations/integrations.html
https://documentation.blackduck.com/category/cicd_integrations

Preface • Black Duck Community

• Online: https://community.blackduck.com/s/contactsupport

• To open a support case, please log in to the Black Duck Community site at https://
community.blackduck.com/s/contactsupport.

• Another convenient resource available at all times is the online Community portal.

Black Duck Community
The Black Duck Community is our primary online resource for customer support, solutions, and information.
The Community allows users to quickly and easily open support cases and monitor progress, learn
important product information, search a knowledgebase, and gain insights from other Black Duck
customers. The many features included in the Community center around the following collaborative actions:

• Connect – Open support cases and monitor their progress, as well as, monitor issues that require
Engineering or Product Management assistance

• Learn – Insights and best practices from other Black Duck product users to allow you to learn valuable
lessons from a diverse group of industry leading companies. In addition, the Customer Hub puts all the
latest product news and updates from Black Duck at your fingertips, helping you to better utilize our
products and services to maximize the value of open source within your organization.

• Solve – Quickly and easily get the answers you’re seeking with the access to rich content and product
knowledge from Black Duck experts and our Knowledgebase.

• Share – Collaborate and connect with Black Duck staff and other customers to crowdsource solutions
and share your thoughts on product direction.

Access the Customer Success Community. If you do not have an account or have trouble accessing the
system, click here to get started, or send an email to community.manager@blackduck.com.

Training
Black Duck Customer Education is a one-stop resource for all your Black Duck education needs. It provides
you with 24x7 access to online training courses and how-to videos.

New videos and courses are added monthly.

In Black Duck Education, you can:

• Learn at your own pace.

• Review courses as often as you wish.

• Take assessments to test your skills.

• Print certificates of completion to showcase your accomplishments.

Learn more at https://blackduck.skilljar.com/page/black-duck or for help with Black Duck, select Black Duck

Tutorials from the Help menu () in the Black Duck UI.

Black Duck Statement on Inclusivity and Diversity
Black Duck is committed to creating an inclusive environment where every employee, customer, and partner
feels welcomed. We are reviewing and removing exclusionary language from our products and supporting
customer-facing collateral. Our effort also includes internal initiatives to remove biased language from our

6 • Installing Black Duck SCA using Kubernetes and OpenShift

https://community.blackduck.com/s/contactsupport
https://community.blackduck.com/s/contactsupport
https://community.blackduck.com/s/contactsupport
https://community.blackduck.com/s/contactsupport
https://community.blackduck.com/
https://community.blackduck.com/
https://community.blackduck.com/s/welcome-to-the-blackduck-community
https://blackduck.skilljar.com/page/black-duck

Preface • Black Duck Security Commitments

engineering and working environment, including terms that are embedded in our software and IPs. At the
same time, we are working to ensure that our web content and software applications are usable to people of
varying abilities. You may still find examples of non-inclusive language in our software or documentation as
our IPs implement industry-standard specifications that are currently under review to remove exclusionary
language.

Black Duck Security Commitments
As an organization dedicated to protecting and securing our customers’ applications, Black Duck is
equally committed to our customers’ data security and privacy. This statement is meant to provide Black
Duck customers and prospects with the latest information about our systems, compliance certifications,
processes, and other security-related activities.

This statement is available at: Security Commitments | Black Duck

Installing Black Duck SCA using Kubernetes and OpenShift • 7

https://www.blackduck.com/company/legal/security-commitments.html

1. Installing Black Duck using Kubernetes and OpenShift •

1. Installing Black Duck using Kubernetes and
OpenShift

Kubernetes and OpenShift™ are orchestration tools used for managing cloud workloads through containers.
Black Duck deployments are supported via Helm chart, see documentation as well as Helm chart samples,
in %install dir%/kubernetes/blackduck/.

8 • Installing Black Duck SCA using Kubernetes and OpenShift

2. Hardware requirements •

2. Hardware requirements
Supported systems

Black Duck supports the following systems for installation and operation:

• 64-bit x86

• ARM64 (AArch64)

Note: BDBA and RL-service are currently not supported on ARM systems.

Black Duck hardware scaling guidelines

For scalability sizing guidelines, see Black Duck Hardware Scaling Guidelines.

Black Duck database

DANGER: Do not delete data from the Black Duck database (bds_hub) unless directed to do so by
a Black Duck Technical Support representative. Be sure to follow appropriate backup procedures.
Deletion of data will cause errors ranging from UI problems to complete failure of Black Duck to start.
Black Duck Technical Support cannot recreate deleted data. If no backups are available, Black Duck
will provide support on a best-effort basis.

Disk space requirements

The amount of required disk space is dependent on the number of projects being managed, so individual
requirements can vary. Consider that each project requires approximately 200 MB.

Black Duck Software recommends monitoring disk utilization on Black Duck servers to prevent disks from
reaching capacity which could cause issues with Black Duck.

BDBA scaling

BDBA scaling is done by adjusting the number of binaryscanner replicas and by adding PostgreSQL
resources based on the expected number of binary scans per hour that will be performed. For every 15
binary scans per hour, add the following:

• One binaryscanner replica

• One CPU for PostgreSQL

• 4GB memory to PostgreSQL

If your anticipated scan rate is not a multiple of 15, round up. For example, 24 binary scans per hour would
require the following:

• Two binaryscanner replicas,

• Two additional CPUs for PostgreSQL, and

• 8GB additional memory for PostgreSQL.

This guidance is valid when binary scans are 20% or less of the total scan volume (by count of scans).

Note: Installing Black Duck Alert requires 1 GB of additional memory.

Installing Black Duck SCA using Kubernetes and OpenShift • 9

https://documentation.blackduck.com/bundle/blackduck-compatibility/page/topics/Black-Duck-Hardware-Scaling-Guidelines.html

3. PostgreSQL versions • General Migration Process

3. PostgreSQL versions
Black Duck 2023.10.0 supports new PostgreSQL features and functionality to improve the performance and
reliability of the Black Duck service. As of Black Duck 2023.10.0, PostgreSQL 14 is the supported version of
PostgreSQL for the internal PostgreSQL container.

Starting with Black Duck 2023.10.0, PostgreSQL settings will be automatically set in deployments using the
PostgreSQL container. Customers using external PostgreSQL will still need to apply the settings manually.

Customers using the PostgreSQL container and upgrading from versions of Black Duck between 2022.2.0
and 2023.7.x (inclusive), will be automatically migrated to PostgreSQL 14. Customers upgrading from older
versions of Black Duck will need to upgrade to 2023.7.x before upgrading to 2024.7.0.

Note: For PostgreSQL sizing guidelines, see Black Duck Hardware Scaling Guidelines.

If you choose to run your own external PostgreSQL instance, Black Duck recommends the latest version
PostgreSQL 16 for new installs.

Note: Black Duck 2025.4.0 added preliminary support for using PostgreSQL 17 as an external
database for testing only; beginning with Black Duck 2025.7.0, PostgreSQL 17 is fully supported for
production use.

CAUTION: Do not run antivirus scans on the PostgreSQL data directory. Antivirus software opens
lots of files, puts locks on files, etc. Those things interfere with PostgreSQL operations. Specific
errors vary by product but usually involve the inability of PostgreSQL to access its data files. One
example is that PostgreSQL fails with "too many open files in the system."

General Migration Process
The guidance here applies to upgrading from any PG 9.6 based Hub (releases prior to 2022.2.0) to
2022.10.0 or later.

1. The migration is performed by the blackduck-postgres-upgrader container.

2. If you are upgrading from a PostgreSQL 9.6-based Version of Black Duck:

• The folder layout of the PostgreSQL data volume is rearranged to make future PostgreSQL version
upgrades simpler.

• The UID of the owner of the data volume is changed. The new default UID is 1001, but see the
deployment-specific instructions.

3. The pg_upgrade script is run to migrate the database to PostgreSQL 13.

4. Plain ANALYZE is run on the PostgreSQL 13 database to initialize query planner statistics.

5. blackduck-postgres-upgrader exits.

10 • Installing Black Duck SCA using Kubernetes and OpenShift

https://documentation.blackduck.com/bundle/blackduck-compatibility/page/topics/Black-Duck-Hardware-Scaling-Guidelines.html

4. Installing Black Duck using Helm • Black Duck helm chart

4. Installing Black Duck using Helm
A Helm chart describes a Kubernetes set of resources that are required for Helm to deploy Black Duck.
Black Duck supports Helm 3.5.4 and the minimum version of Kubernetes is 1.17.

Helm charts are available here: https://repo.blackduck.com/cloudnative

Click here for instructions about installing Black Duck using Helm. The Helm chart bootstraps a Black Duck
deployment on a Kubernetes cluster using Helm package manager.

Migrating on Kubernetes with Helm

If you are upgrading from a PostgreSQL 9.6-based version of Black Duck, this migration replaces the use of
a CentOS PostgreSQL container with a Black Duck-provided container. Also, the blackduck-init container is
replaced with the blackduck-postgres-waiter container.

On plain Kubernetes, the container of the upgrade job will run as root unless overridden. However, the only
requirement is that the job runs as the same UID as the owner of the PostgreSQL data volume (which is
UID=26 by default).

On OpenShift, the upgrade job assumes that it will run with the same UID as the owner of the PostgreSQL
data volume.

Black Duck helm chart
This chart bootstraps Black Duck deployment on a Kubernetes cluster using the Helm package manager.

Note: This document describes a quickstart process of installing a basic deployment. For more
configuration options, please refer to the Kubernetes documentation.

Prerequisites

• Kubernetes 1.16+

• A storageClass configured that allows persistent volumes.

The reclaimPolicy of the storageClass in use should be set to Retain to ensure data
persistence. AzureFile (non-CSI variant) requires a custom storage class for RabbitMQ due to it
being treated as an SMB mount where file and directory permissions are immutable once mounted
into a pod.

• Helm 3

• Adding the repository to your local Helm repository:

$ helm repo add blackduck https://repo.blackduck.com/cloudnative

Getting started

Save the chart locally

To save the chart on your machine, run the following command:

Installing Black Duck SCA using Kubernetes and OpenShift • 11

https://repo.blackduck.com/cloudnative
https://github.com/blackducksoftware/hub/tree/master/kubernetes/blackduck

4. Installing Black Duck using Helm • Configuring your Black Duck instance

$ helm pull blackduck/blackduck -d <DESTINATION_FOLDER> --untar

This will extract the charts to the specified folder (as denoted by the -d flag in the above command), which
contains the necessary files to deploy the application.

Create a namespace

Create a namespace by running the commands below. The example uses bd, but you can replace it with
any name of your choice.

$ BD_NAME="bd"
$ kubectl create ns ${BD_NAME}

Create a custom TLS secret (optional)

It's common to provide a custom web server TLS secret before installing the Black Duck Helm chart. Create
the secret with the command below:

$ BD_NAME="bd"
$ kubectl create secret generic ${BD_NAME}-blackduck-webserver-certificate -n ${BD_NAME} --from-
file=WEBSERVER_CUSTOM_CERT_FILE=tls.crt --from-file=WEBSERVER_CUSTOM_KEY_FILE=tls.key

Next, update the TLS certificate for Black Duck block in values.yaml, ensuring to uncomment
the tlsCertSecretName value (tls.crt and tls.key files are required). If the value tlsCertSecretName is
not provided then Black Duck will generate its own certificates.

tlsCertSecretName: ${BD_NAME}-blackduck-webserver-certificate

Note: This step is not required where TLS termination is being handled upstream from the
application (i.e. via an ingress resource).

Configuring your Black Duck instance

Choosing an appropriate deployment size

Black Duck provides several Black Duck pre-configured scans-per-hour yaml files to help with sizing your
deployment appropriately. These have been tested by our performance lab using real-world configurations.
However, they are not "one size fits all", therefore, if you plan to run large amounts BDBA scans, snippet
scans or reports, please reach out to your CSM for assistance in determining a custom sizing tier.

As of 2024.4.x, GEN04 sizing files should be used.

Note: The 10sph.yaml files are not intended for production purposes and should not be deployed for
anything outside of local testing.

Configuring persistent storage

Black Duck requires certain data to be persisted to disk. Therefore, an appropriate storageClass should
be utilized within your install. If your cluster does not have a default storageClass, or you wish to override
it, update the following parameters:

it will apply to all PVC's storage class but it can be override at container level
storageClass:

12 • Installing Black Duck SCA using Kubernetes and OpenShift

https://documentation.blackduck.com/bundle/blackduck-compatibility/page/topics/Black-Duck-Hardware-Scaling-Guidelines.html

4. Installing Black Duck using Helm • Exposing the Black Duck UI

The reclaimPolicy of the storageClass in use should be set to Retain to ensure data persistence.
AzureFile (non-CSI variant) requires a custom storage class for RabbitMQ due to it being treated as an SMB
mount where file and directory permissions are immutable once mounted into a pod.

Configuring the database

If you choose to use an external postgres instance (default configuration), you will need to configure the
following parameters in values.yaml:

postgres.host: ""
postgres.adminUsername: ""
postgres.adminPassword: ""
postgres.userUsername: ""
postgres.userPassword: ""

If you choose to utilize the containerized PostgreSQL instance, set the following parameter to false:

postgres.isExternal: true

Note: It is important that the specifications of the database deployment meet the appriopriate size
tier. Regardless of whatever database deployment method you choose, ensure that you regularly
perform backups and periodically verify the integrity of those backups.

Exposing the Black Duck UI
The Black Duck User Interface (UI) can be accessed via several methods, described below.

NodePort

NodePort is the default service type set in the values.yaml. If you want to use a custom NodePort, set the
following parameters in values.yaml to the desired port:

Expose Black Duck's User Interface
exposeui: true
possible values are NodePort, LoadBalancer or OpenShift (in case of routes)
exposedServiceType: NodePort
custom port to expose the NodePort service on
exposedNodePort: "<NODE_PORT_TO_BE_USED>"

You can access the Black Duck UI via https://${NODE_IP}:${NODE_PORT}.

Load balancer

Setting the exposedServiceType to LoadBalancer in the values.yaml, will instruct Kubernetes to deploy
an external Load Balancer service. You can use the following command to get the external IP address of the
Black Duck web server:

$ kubectl get services ${BD_NAME}-blackduck-webserver-exposed -n ${BD_NAME}

If the external IP address is shown as pending, wait for a minute and enter the same command again.

You can access the Black Duck UI by https://${EXTERNAL_IP}.

Ingress

This is typically the most common method of exposing the application to users. Firstly, set exposeui in the
values.yaml to false since the ingress will route to the service.

Installing Black Duck SCA using Kubernetes and OpenShift • 13

4. Installing Black Duck using Helm • Installing the chart

Expose Black Duck's User Interface
exposeui: false

A typical ingress manifest would be representative of the example below. Note, the configuration of the
ingress controller and TLS certificates themselves are outside of the scope of this guide.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ${BD_NAME}-blackduck-webserver-exposed
 namespace: ${BD_NAME}
spec:
 rules:
 - host: blackduck.foo.org
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: ${BD_NAME}-blackduck-webserver
 port:
 number: 443
 ingressClassName: nginx

Once deployed, the UI will be available on port 443 on the Public IP of your ingress controller.

OpenShift

Setting the exposedServiceType to OpenShift in the values.yaml, will instruct OpenShift to deploy route
service.

Expose Black Duck's User Interface
exposeui: true
possible values are NodePort, LoadBalancer or OpenShift (in case of routes)
exposedServiceType: OpenShift

You can use the following command to get the OpenShift routes:

$ oc get routes ${BD_NAME}-blackduck -n ${BD_NAME}

You can access the Black Duck UI by https://${ROUTE_HOST}.

Installing the chart
To install the Black Duck chart, run the following command:

$ BD_NAME="bd" && BD_SIZE="sizes-gen04/120sph" && BD_INSTALL_DIR="<DESTINATION_FOLDER>/
blackduck/"
$ helm install ${BD_NAME} ${BD_INSTALL_DIR} --namespace ${BD_NAME} -f ${BD_INSTALL_DIR}/
values.yaml -f ${BD_INSTALL_DIR}/${BD_SIZE}.yaml

Tip: List all releases using helm list and list all specified values using helm get values
RELEASE_NAME.

You must not use the --wait flag when you install the Helm Chart. The --wait flags waits for all pods
to become Ready before marking the Install as done. However the pods will not become Ready until the
postgres-init job is run during the Post-Install. Therefore the Install will never finish.

Alternatively, Black Duck can be deployed using kubectl apply by generating a dry run manifest from
Helm:

14 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Uninstalling the chart

$ BD_NAME="bd" && BD_SIZE="sizes-gen04/120sph" && BD_INSTALL_DIR="<DESTINATION_FOLDER>/
blackduck/"
$ helm install ${BD_NAME} ${BD_INSTALL_DIR} --namespace ${BD_NAME} -f ${BD_INSTALL_DIR}/
values.yaml -f ${BD_INSTALL_DIR}/${BD_SIZE}.yaml --dry-run=client > ${BD_NAME}.yaml

install the manifest
$ kubectl apply -f ${BD_NAME}.yaml --validate=false

Uninstalling the chart
To uninstall/delete the deployment:

$ helm uninstall ${BD_NAME} --namespace ${BD_NAME}

The command removes all the Kubernetes components associated with the chart and deletes the release.

If you have used kubectl to install from a dry-run as shown above, the following command will remove the
install:

$ kubectl delete -f ${BD_NAME}.yaml

Upgrading the chart
Before upgrading to new version, please make sure to run the following command to pull the latest version
of charts from chart museum:

$ helm repo update
$ helm pull blackduck/blackduck -d <DESTINATION_FOLDER> --untar

To update the deployment:

$ BD_NAME="bd" && BD_SIZE="sizes-gen04/120sph"
$ helm upgrade ${BD_NAME} ${BD_INSTALL_DIR} --namespace ${BD_NAME} -f ${BD_INSTALL_DIR}/
values.yaml -f ${BD_INSTALL_DIR}/${BD_SIZE}.yaml

Configuration parameters
The following tables list the configurable parameters of the Black Duck chart and their default values.

• Common configuration

• Authentication pod

• Binary scanner pod

• BOM engine pod

• CFSSL pod

• Datadog pod

• Integration pod

• Job runner pod

• Logstash pod

• Match engine pod

Installing Black Duck SCA using Kubernetes and OpenShift • 15

4. Installing Black Duck using Helm • Configuration parameters

• PostgreSQL pod

• PostgreSQL readiness init container

• PostgreSQL upgrade job

• RabbitMQ pod

• Redis pod

• Registration pod

• Scan pod

• Storage pod

• Webapp pod

• Webserver pod

Note: Do not set the following parameters in the environs flag. Instead, use their respective flags.

Use dataRetentionInDays, enableSourceCodeUpload and maxTotalSourceSizeinMB for the following:
* DATA_RETENTION_IN_DAYS
* ENABLE_SOURCE_UPLOADS
* MAX_TOTAL_SOURCE_SIZE_MB

Use enableAlert, alertName and alertNamespace for the following:
* USE_ALERT
* HUB_ALERT_HOST
* HUB_ALERT_PORT

Use exposedNodePort and exposedServiceType for the following:
* PUBLIC_HUB_WEBSERVER_PORT

Use postgres.isExternal and postgres.ssl for the following:
* HUB_POSTGRES_ENABLE_SSL
* HUB_POSTGRES_ENABLE_SSL_CERT_AUTH

Use enableIPV6 for the following:
* IPV4_ONLY

Common configuration
Parameter Description Default

registry Image repository docker.io/blackducksoftware

imageTag Version of Black Duck 2024.7.1

imagePullSecrets Reference to one or more secrets
to be used when pulling images

[]

tlsCertSecretName Name of Webserver TLS Secret
containing Certificates (if not
provided Certificates will be
generated)

exposeui Enable Black Duck Web Server
User Interface (UI)

true

exposedServiceType Expose Black Duck Web Server
Service Type

NodePort

enablePersistentStorage If true, Black Duck will have
persistent storage

true

16 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

storageClass Global storage class to be used in
all Persistent Volume Claim

enableLivenessProbe If true, Black Duck will have
liveness probe

true

enableInitContainer If true, Black Duck will initialize the
required databases

true

enableSourceCodeUpload If true, source code upload will
be enabled by setting in the
environment variable (this takes
priority over environs flag values)

false

dataRetentionInDays Source code upload's data
retention in days

180

maxTotalSourceSizeinMB Source code upload's maximum
total source size in MB

4000

enableBinaryScanner If true, binary analysis will be
enabled by deploying the binary
scan worker

false

enableIntegration If true, blackduck integration
will be enabled by setting in the
environment variable (this takes
priority over environs flag values)

false

enableAlert If true, the Black Duck Alert
service will be added to the nginx
configuration with the environ
"HUB_ALERT_HOST:<blackduck_name>-

alert.<blackduck_name>.svc

false

enableIPV6 If true, IPV6 support will be
enabled by setting in the
environment variable (this takes
priority over environs flag values)

true

certAuthCACertSecretName Own Certificate Authority (CA)
for Black Duck Certificate
Authentication

run this command "kubectl
 create secret generic -n
 <namespace>

 <name>-blackduck-
auth-custom-ca --from-
file=AUTH_CUSTOM_CA=ca.crt"
 and provide the

 secret name

proxyCertSecretName Black Duck proxy server’s
Certificate Authority (CA) run this command "kubectl

 create secret generic -n
 <namespace>

 <name>-blackduck-
proxy-certificate --from-
file=HUB_PROXY_CERT_FILE=proxy.crt"
 and

Installing Black Duck SCA using Kubernetes and OpenShift • 17

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

 provide the secret name

proxyPasswordSecretName Black Duck proxy password secret
run this command "kubectl
 create secret generic -n
 <namespace>

 <name>-blackduck-proxy-
password

 --from-
file=HUB_PROXY_PASSWORD_FILE=proxy_password_file"
 and provide the secret

 name

ldapPasswordSecretName Black Duck LDAP password
secret run this command "kubectl

 create secret generic -n
 <namespace>

 <name>-blackduck-ldap-
password

 --from-
file=LDAP_TRUST_STORE_PASSWORD_FILE=ldap_password_file"
 and provide the secret

 name

environs environment variables that
need to be added to Black Duck
configuration

map e.g. if you want to set
 PUBLIC_HUB_WEBSERVER_PORT,
 then it should be --set

 environs.PUBLIC_HUB_WEBSERVER_PORT=30269

Authentication pod configuration
Parameter Description Default

authentication.registry Image repository to be override at
container level

authentication.resources.limits.memoryAuthentication container Memory
Limit

1024Mi

authentication.resources.requests.memoryAuthentication container Memory
request

1024Mi

authentication.maxRamPercentageAuthentication container maximum
heap size

90

authentication.persistentVolumeClaimNamePoint to an existing Authentication
Persistent Volume Claim (PVC)

authentication.claimSize Authentication Persistent Volume
Claim (PVC) claim size

2Gi

authentication.storageClass Authentication Persistent Volume
Claim (PVC) storage class

18 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

authentication.volumeName Point to an existing Authentication
Persistent Volume (PV)

authentication.nodeSelector Authentication node labels for pod
assignment

{}

authentication.tolerations Authentication node tolerations for
pod assignment

[]

authentication.affinity Authentication node affinity for
pod assignment

{}

authentication.podSecurityContextAuthentication security context at
pod level

{}

authentication.securityContextAuthentication security context at
container level

{}

Binary scanner pod configuration
Parameter Description Default

binaryscanner.registry Image repository to be override at
container level

docker.io/sigblackduck

binaryscanner.imageTag Image tag to be override at
container level

2024.6.3

binaryscanner.resources.limits.CpuBinary Scanner container CPU
Limit

1000m

binaryscanner.resources.requests.CpuBinary Scanner container CPU
request

1000m

binaryscanner.resources.limits.memoryBinary Scanner container Memory
Limit

2048Mi

binaryscanner.resources.requests.memoryBinary Scanner container Memory
request

2048Mi

binaryscanner.nodeSelector Binary Scanner node labels for
pod assignment

{}

binaryscanner.tolerations Binary Scanner node tolerations
for pod assignment

[]

binaryscanner.affinity Binary Scanner node affinity for
pod assignment

{}

binaryscanner.podSecurityContextBinary Scanner security context at
pod level

{}

binaryscanner.securityContext Binary Scanner security context at
container level

{}

Installing Black Duck SCA using Kubernetes and OpenShift • 19

4. Installing Black Duck using Helm • Configuration parameters

BOM engine pod configuration
Parameter Description Default

bomengine.registry Image repository to be override at
container level

bomengine.resources.limits.memoryBOM Engine container Memory
Limit

1024Mi

bomengine.resources.requests.memoryBOM Engine container Memory
request

1024Mi

bomengine.maxRamPercentage BOM Engine container maximum
heap size

90

bomengine.nodeSelector BOM Engine node labels for pod
assignment

{}

bomengine.tolerations BOM Engine node tolerations for
pod assignment

[]

bomengine.affinity BOM Engine node affinity for pod
assignment

{}

bomengine.podSecurityContext BOM Engine security context at
pod level

{}

bomengine.securityContext BOM Engine security context at
container level

{}

CFSSL pod configuration
Parameter Description Default

cfssl.registry Image repository to be override at
container level

cfssl.imageTag Image tag to be override at
container level

1.0.28

cfssl.resources.limits.memory Cfssl container Memory Limit 640Mi

cfssl.resources.requests.memoryCfssl container Memory request 640Mi

cfssl.persistentVolumeClaimNamePoint to an existing Cfssl
Persistent Volume Claim (PVC)

cfssl.claimSize Cfssl Persistent Volume Claim
(PVC) claim size

2Gi

cfssl.storageClass Cfssl Persistent Volume Claim
(PVC) storage class

cfssl.volumeName Point to an existing Cfssl
Persistent Volume (PV)

cfssl.nodeSelector Cfssl node labels for pod
assignment

{}

20 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

cfssl.tolerations Cfssl node tolerations for pod
assignment

[]

cfssl.affinity Cfssl node affinity for pod
assignment

{}

cfssl.podSecurityContext Cfssl security context at pod level {}

cfssl.securityContext Cfssl security context at container
level

{}

Datadog pod configuration
Parameter Description Default

datadog.enable only true for hosted customers
(Values.enableInitContainer
should be true)

false

datadog.registry Image repository to be override at
container level

datadog.imageTag Image tag to be override at
container level

1.0.15

datadog.imagePullPolicy Image pull policy IfNotPresent

Documentation pod configuration
Parameter Description Default

documentation.registry Image repository to be override at
container level

documentation.resources.limits.memoryDocumentation container Memory
Limit

512Mi

documentation.resources.requests.memoryDocumentation container Memory
request

512Mi

documentation.maxRamPercentageDocumentation container Memory
request

90

documentation.nodeSelector Documentation node labels for
pod assignment

{}

documentation.tolerations Documentation node tolerations
for pod assignment

[]

documentation.affinity Documentation node affinity for
pod assignment

{}

documentation.podSecurityContextDocumentation security context at
pod level

{}

documentation.securityContext Documentation security context at
container level

{}

Installing Black Duck SCA using Kubernetes and OpenShift • 21

4. Installing Black Duck using Helm • Configuration parameters

Integration pod configuration
Parameter Description Default

integration.registry Image repository to be override at
container level

integration.replicas Integration Pod Replica Count 1

integration.resources.limits.cpuIntegration container CPU Limit 1000m

integration.resources.requests.cpuIntegration container CPU request 500m

integration.resources.limits.memoryIntegration container Memory
Limit

5120Mi

integration.resources.requests.memoryIntegration container Memory
request

5120Mi

integration.maxRamPercentage Integration container maximum
heap size

90

integration.nodeSelector Integration node labels for pod
assignment

{}

integration.tolerations Integration node tolerations for
pod assignment

[]

integration.affinity Integration node affinity for pod
assignment

{}

integration.podSecurityContextIntegration security context at pod
level

{}

integration.securityContext Integration security context at
container level

{}

Job runner pod configuration
Parameter Description Default

jobrunner.registry Image repository to be override at
container level

jobrunner.replicas Job runner Pod Replica Count 1

jobrunner.resources.limits.cpuJob runner container CPU Limit 1000m

jobrunner.resources.requests.cpuJob runner container CPU request 1000m

jobrunner.resources.limits.memoryJob runner container Memory
Limit

4608Mi

jobrunner.resources.requests.memoryJob runner container Memory
request

4608Mi

jobrunner.maxRamPercentage Job runner container maximum
heap size

90

jobrunner.nodeSelector Job runner node labels for pod
assignment

{}

22 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

jobrunner.tolerations Job runner node tolerations for
pod assignment

[]

jobrunner.affinity Job runner node affinity for pod
assignment

{}

jobrunner.podSecurityContext Job runner security context at pod
level

{}

jobrunner.securityContext Job runner security context at
container level

{}

Logstash pod configuration
Parameter Description Default

logstash.registry Image repository to be override at
container level

logstash.imageTag Image tag to be override at
container level

1.0.38

logstash.resources.limits.memoryLogstash container Memory Limit 1024Mi

logstash.resources.requests.memoryLogstash container Memory
request

1024Mi

logstash.maxRamPercentage Logsash maximum heap size 90

logstash.persistentVolumeClaimNamePoint to an existing Logstash
Persistent Volume Claim (PVC)

logstash.claimSize Logstash Persistent Volume Claim
(PVC) claim size

20Gi

logstash.storageClass Logstash Persistent Volume Claim
(PVC) storage class

logstash.volumeName Point to an existing Logstash
Persistent Volume (PV)

logstash.nodeSelector Logstash node labels for pod
assignment

{}

logstash.tolerations Logstash node tolerations for pod
assignment

[]

logstash.affinity Logstash node affinity for pod
assignment

{}

logstash.securityContext Logstash security context at
container level

{}

Installing Black Duck SCA using Kubernetes and OpenShift • 23

4. Installing Black Duck using Helm • Configuration parameters

Match engine pod configuration
Parameter Description Default

matchengine.registry Image repository to be override at
container level

matchengine.resources.limits.memoryMATCH Engine container Memory
Limit

4608Mi

matchengine.resources.requests.memoryMATCH Engine container Memory
request

4608Mi

matchengine.maxRamPercentage MATCH Engine maximum heap
size

90

matchengine.nodeSelector MATCH Engine node labels for
pod assignment

{}

matchengine.tolerations MATCH Engine node tolerations
for pod assignment

[]

matchengine.affinity MATCH Engine node affinity for
pod assignment

{}

matchengine.podSecurityContextMATCH Engine security context at
pod level

{}

matchengine.securityContext MATCH Engine security context at
container level

{}

PostgreSQL pod configuration
Parameter Description Default

postgres.registry Image repository docker.io/centos

postgres.isExternal If true, External PostgreSQL will
be used

true

postgres.host PostgreSQL host (required only if
external PostgreSQL is used)

postgres.port PostgreSQL port 5432

postgres.pathToPsqlInitScript Full file path of the PostgreSQL
initialization script

external-postgres-init.pgsql

postgres.ssl PostgreSQL SSL true

postgres.adminUserName PostgreSQL admin username postgres

postgres.adminPassword PostgreSQL admin user password testPassword

postgres.userUserName PostgreSQL non admin username blackduck_user

postgres.userPassword PostgreSQL non admin user
password

testPassword

24 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

postgres.resources.requests.cpuPostgreSQL container CPU
request (if external postgres is not
used)

1000m

postgres.resources.requests.memoryPostgreSQL container Memory
request (if external postgres is not
used)

3072Mi

postgres.persistentVolumeClaimNamePoint to an existing PostgreSQL
Persistent Volume Claim (PVC) (if
external postgres is not used)

postgres.claimSize PostgreSQL Persistent Volume
Claim (PVC) claim size (if external
postgres is not used)

150Gi

postgres.storageClass PostgreSQL Persistent Volume
Claim (PVC) storage class (if
external postgres is not used)

postgres.volumeName Point to an existing PostgreSQL
Persistent Volume (PV) (if external
postgres is not used)

postgres.confPersistentVolumeClaimNamePoint to an existing PostgreSQL
configuration Persistent Volume
Claim (PVC) (if external postgres
is not used)

postgres.confClaimSize PostgreSQL configuration
Persistent Volume Claim (PVC)
claim size (if external postgres is
not used)

5Mi

postgres.confStorageClass PostgreSQL configuration
Persistent Volume Claim (PVC)
storage class (if external postgres
is not used)

postgres.confVolumeName Point to an existing PostgreSQL
configuration Persistent Volume
(PV) (if external postgres is not
used)

postgres.nodeSelector PostgreSQL node labels for pod
assignment

{}

postgres.tolerations PostgreSQL node tolerations for
pod assignment

[]

postgres.affinity PostgreSQL node affinity for pod
assignment

{}

postgres.podSecurityContext PostgreSQL security context at
pod level

{}

Installing Black Duck SCA using Kubernetes and OpenShift • 25

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

postgres.securityContext PostgreSQL security context at
container level

{}

PostgreSQL readiness init container configuration
Parameter Description Default

postgresWaiter.registry Image repository

postgresWaiter.podSecurityContextPostgres readiness check security
context at pod level

{}

postgresWaiter.securityContextPostgres readiness check context
at container level

{}

PostgreSQL upgrade job configuration
Parameter Description Default

postgresUpgrader.registry Image repository

postgresUpgrader.podSecurityContextPostgres upgrader security
context at job level

{}

postgresUpgrader.securityContextPostgres upgrader security
context at container level

{}

RabbitMQ pod configuration
Parameter Description Default

rabbitmq.registry Image repository to be override at
container level

rabbitmq.imageTag Image tag to be override at
container level

1.2.40

rabbitmq.resources.limits.memoryRabbitMQ container Memory Limit 1024Mi

rabbitmq.resources.requests.memoryRabbitMQ container Memory
request

1024Mi

rabbitmq.nodeSelector RabbitMQ node labels for pod
assignment

{}

rabbitmq.tolerations RabbitMQ node tolerations for pod
assignment

[]

rabbitmq.affinity RabbitMQ node affinity for pod
assignment

{}

rabbitmq.podSecurityContext RabbitMQ security context at pod
level

{}

rabbitmq.securityContext RabbitMQ security context at
container level

{}

26 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Redis pod configuration
Parameter Description Default

redis.registry Image repository to be override at
container level

redis.resources.limits.memory Redis container Memory Limit 1024Mi

redis.resources.requests.memoryRedis container Memory request 1024Mi

redis.tlsEnalbed Enable TLS connections between
client and Redis

false

redis.maxTotal Maximum number of concurrent
client connections that can be
connected to Redis

128

redis.maxIdle Maximum number of concurrent
client connections that can remain
idle in the pool, without extra ones
being released

128

redis.nodeSelector Redis node labels for pod
assignment

{}

redis.tolerations Redis node tolerations for pod
assignment

[]

redis.affinity Redis node affinity for pod
assignment

{}

redis.podSecurityContext Redis security context at pod level {}

redis.securityContext Redis security context at container
level

{}

Registration pod configuration
Parameter Description Default

registration.registry Image repository to be override at
container level

registration.requestCpu Registration container CPU
request

1000m

registration.resources.limits.memoryRegistration container Memory
Limit

1024Mi

registration.resources.requests.memoryRegistration container Memory
request

1024Mi

registration.maxRamPercentage Registration container maximum
heap size

90

registration.persistentVolumeClaimNamePoint to an existing Registration
Persistent Volume Claim (PVC)

Installing Black Duck SCA using Kubernetes and OpenShift • 27

4. Installing Black Duck using Helm • Configuration parameters

Parameter Description Default

registration.claimSize Registration Persistent Volume
Claim (PVC) claim size

2Gi

registration.storageClass Registration Persistent Volume
Claim (PVC) storage class

registration.volumeName Point to an existing Registration
Persistent Volume (PV)

registration.nodeSelector Registration node labels for pod
assignment

{}

registration.tolerations Registration node tolerations for
pod assignment

[]

registration.affinity Registration node affinity for pod
assignment

{}

registration.podSecurityContextRegistration security context at
pod level

{}

registration.securityContext Registration security context at
container level

{}

Scan pod configuration
Parameter Description Default

scan.registry Image repository to be override at
container level

scan.replicas Scan Pod Replica Count 1

scan.resources.limits.memory Scan container Memory Limit 2560Mi

scan.resources.requests.memoryScan container Memory request 2560Mi

scan.maxRamPercentage Scan container maximum heap
size

90

scan.nodeSelector Scan node labels for pod
assignment

{}

scan.tolerations Scan node tolerations for pod
assignment

[]

scan.affinity Scan node affinity for pod
assignment

{}

scan.podSecurityContext Scan security context at pod level {}

scan.securityContext Scan security context at container
level

{}

28 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Storage pod configuration
Parameter Description Default

storage.registry Image repository to be override at
container level

storage.requestCpu Storage container CPU request 1000m

storage.resources.limits.memoryStorage container Memory Limit 2048Mi

storage.resources.requests.memoryStorage container Memory
request

2048Mi

storage.maxRamPercentage Storage container maximum heap
size

60

storage.persistentVolumeClaimNamePoint to an existing Storage
Persistent Volume Claim (PVC)

storage.claimSize Storage Persistent Volume Claim
(PVC) claim size

100Gi

storage.storageClass Storage Persistent Volume Claim
(PVC) storage class

storage.volumeName Point to an existing Storage
Persistent Volume (PV)

storage.nodeSelector Storage node labels for pod
assignment

{}

storage.tolerations Storage node tolerations for pod
assignment

[]

storage.affinity Storage node affinity for pod
assignment

{}

storage.podSecurityContext Storage security context at pod
level

{}

storage.securityContext Storage security context at
container level

{}

storage.providers Configuration to support multiple
storage platforms. Please refer
to Storage Providers section for
additional details.

[]

Storage Providers

The provider in storage service refers to a persistence type and its configuration. Black Duck manages tools,
application reports and other large blobs under storage service. Currently, it supports only the filesystem as
one of the provider.

storage:
 providers:
 - name: <name-for-the-provider> <String>
 enabled: <flag-to-enable/disable-provider> <Boolean>
 index: <index-value-for-the-provider> <Integer>
 type: <storage-type> <String>
 preference: <weightage-for-the-provider> <Integer>

Installing Black Duck SCA using Kubernetes and OpenShift • 29

4. Installing Black Duck using Helm • Configuration parameters

 existingPersistentVolumeClaimName: <existing-persistence-volume-claim-name> <String>
 pvc:
 size: <size-of-the-persistence-disk> <String>
 storageClass: <storage-class-name> <String>
 existingPersistentVolumeName: <existing-persistence-volume-name> <String>
 mountPath: <mount-path-for-the-volume> <String>

Parameter Type Description Default

name String A name for the provider
configuration. Eg.
blackduck-file-storage

enabled Boolean A flag to control enabling/
disabling of the provider
instance

false

index Integer An index value for the
provider configuration.
Eg. 1,2,3.

type String Storage type. Defaults to
file.

file

preference Integer A number denoting
the weightage for
the provider instance
configuration. If multiple
provider instances
are configured, then
this value is used to
determine which provider
to be used as default
storage option.

existingPersistentVolumeClaimNameString An option to re-use
existing persistent
volume claim for the
provider

pvc.size String The volume size to be
used while creating
persistent volume. A
minimum size of 100Gi
is recommended for
storage service.

100Gi

pvc.storageClass String The storage class to
be used for persistent
volume

pvc.existingPersistentVolumeNameString An option to re-use
existing persistent
volume for the provider

mountPath String Path inside the container
where the provider
volume to be mounted

30 • Installing Black Duck SCA using Kubernetes and OpenShift

4. Installing Black Duck using Helm • Configuration parameters

Parameter Type Description Default

readonly Boolean If present allows you to
mark a provider as read
only

false

migrationMode String Indicates if a migration
is configured. Values
can be 'NONE',
DRAIN', 'DELETE' or
'DUPLICATE'

'NONE'

Webapp pod configuration
Parameter Description Default

webapp.registry Image repository to be override at
container level

webapp.resources.requests.cpu Webapp container CPU request 1000m

webapp.resources.limits.memoryWebapp container Memory Limit 2560Mi

webapp.resources.requests.memoryWebapp container Memory
request

2560Mi

webapp.maxRamPercentage Webapp container maximum heap
size

90

webapp.persistentVolumeClaimNamePoint to an existing Webapp
Persistent Volume Claim (PVC)

webapp.claimSize Webapp Persistent Volume Claim
(PVC) claim size

2Gi

webapp.storageClass Webapp Persistent Volume Claim
(PVC) storage class

webapp.volumeName Point to an existing Webapp
Persistent Volume (PV)

webapp.nodeSelector Webapp node labels for pod
assignment

{}

webapp.tolerations Webapp node tolerations for pod
assignment

[]

webapp.affinity Webapp node affinity for pod
assignment

{}

webapp.podSecurityContext Webapp and Logstash security
context at pod level

{}

webapp.securityContext Webapp security context at
container level

{}

Installing Black Duck SCA using Kubernetes and OpenShift • 31

4. Installing Black Duck using Helm • Configuration parameters

Webserver pod configuration
Parameter Description Default

webserver.registry Image repository to be override at
container level

webserver.imageTag Image tag to be override at
container level

2024.7.1

webserver.resources.limits.memoryWebserver container Memory
Limit

512Mi

webserver.resources.requests.memoryWebserver container Memory
request

512Mi

webserver.nodeSelector Webserver node labels for pod
assignment

{}

webserver.tolerations Webserver node tolerations for
pod assignment

[]

webserver.affinity Webserver node affinity for pod
assignment

{}

webserver.podSecurityContext Webserver security context at pod
level

{}

webserver.securityContext Webserver security context at
container level

{}

32 • Installing Black Duck SCA using Kubernetes and OpenShift

5. Administrative Tasks • Configuring secrets encryption in Kubernetes

5. Administrative Tasks

Configuring secrets encryption in Kubernetes
Black Duck supports encryption at rest of critical data within the system. This encryption is based upon
a secret provisioned to the Black Duck installation by the orchestration environment (Docker Swarm or
Kubernetes). The process to create and manage this secret, create a backup secret, and rotate the secret
based upon your own organization’s security policies is outlined below.

The critical data being encrypted are the following:

• SCM Integration OAuth tokens

• SCM Integration provider OAuth application client secrets

• LDAP credentials

• SAML private signing certificates

Note: Once secrets encryption is enabled, it can never be disabled.

What is an encryption secret?

An encryption secret is a random sequence used to generate an internal cryptographic key in order to
unlock resources within the system. The encryption of secrets in Black Duck is controlled by 3 symmetric
keys, the root, backup and previous keys. These three keys are generated by seeds passed into Black Duck
as Kubernetes and Docker Swarm secrets. The three secrets are named:

• crypto-root-seed

• crypto-backup-seed

• crypto-prev-seed

In normal conditions, all three seeds will not be in active use. Unless a rotation action is in progress, the only
seed active will be the root seed.

Securing the root seed

It is important to protect the root seed. A user possessing your root seed along with a copy of the system
data could unlock and read the protected contents of the system. Some Docker Swarm or Kubernetes
systems do not encrypt their secrets at rest by default. It is strongly advised to configure these orchestration
systems to be encrypted internally so that secrets created afterwards in the system remain secure.

The root seed is necessary to recreate the system state from backup as part of a disaster recovery plan. A
copy of the root seed file should be stored in a secret location separate from the orchestration system so
that the combination of the seed plus the backup can recreate the system. Storing the root seed in the same
location as the backup files is not advised. If one set of files is leaked or stolen – both will be, therefore,
having separate locations for backup data and seed backups is recommended.

Enabling secrets encryption in Kubernetes

To enable secrets encryption in Kubernetes, you must change the value of
enableApplicationLevelEncryption to true in the values.yaml orchestration file:

if true, enables application level encryption

Installing Black Duck SCA using Kubernetes and OpenShift • 33

5. Administrative Tasks • Generating seeds in Kubernetes

enableApplicationLevelEncryption: true

Key seed administration scripts

You can find sample administration scripts in the Black Duck GitHub public repository:

https://github.com/blackducksoftware/secrets-encryption-scripts

These scripts are not meant to be used for administering Black Duck secrets encryption, but rather to
illustrate the use of the low-level Docker and Kubernetes commands documented here. There are two sets
of scripts, each in its own sub-directory, corresponding to use on Kubernetes and Docker Swarm platforms.
There is a one-to-one correspondence between the individual scripts, where applicable, for Kubernetes and
Docker Swarm. For example, both sets of scripts contain a script called:

createInitialSeeds.sh

Generating seeds in Kubernetes

Generating seeds in OpenSSL

The content of the seeds can be generated using any mechanism that generates secure random contents
at least 1024 bytes long. As soon as a seed has been created and saved in a secret, it should be removed
from your file system and saved in a private, secure location.

The OpenSSL command is as follows:

openssl rand -hex 1024 > root_seed

Generating seeds in Kubernetes

There are many Kubernetes command lines that will create a secret. The command listed below allows
better tracking of the secret and whether it changes or not, and ensures compatibility with being able to
manipulate secrets with an online system. Secrets can be created and deleted in Kubernetes with Black
Duck actively running.

kubectl create secret generic crypto-root-seed -n $NAMESPACE --save-config --dry-run=client --
from-file=crypto-root-seed=./root_seed -o yaml | kubectl apply -f -

In order to delete the prev key secret in Kubernetes:

kubectl delete secret crypto-prev-seed -n $NAMESPACE

Configuring a backup seed
Having a backup root seed is recommended to ensure the system can be recovered in a disaster recovery
scenario. The backup root seed is an alternative root seed that can be put in place in order to recover a
system. Consequently, it must be stored securely in the same way as a root seed.

The backup root seed has some special features in that once it is associated with the system, it remains
viable even across root seed rotations. Once a backup seed is processed by the system, it should be
removed from the secrets to limit its exposure to attacks and leakage. The backup root seed may have a
different (less often) rotation schedule as the secret should not be “active” in the system at any point in time.

When you need or want to rotate a root seed, you first need to define the current root seed as the previous
root seed. You can then generate a new root seed and put that in place.

34 • Installing Black Duck SCA using Kubernetes and OpenShift

https://github.com/blackducksoftware/secrets-encryption-scripts

5. Administrative Tasks • Managing secret rotation in Kubernetes

When the system processes these seeds, the previous root key will be used to rotate resources to use
the new root seed. After this processing, the previous root seed should be removed from the secrets to
complete the rotation and clean up the old resources.

Creating a backup root seed

Once created initially, the backup seed/key wraps the TDEK (tenant decrypt, encrypt key) low-level key. The
sample script createInitialSeeds.sh will create both a root and a backup seed. Once Black Duck is
running, it uses both keys to wrap the TDEK.

After that operation is complete and both the root and backup seeds are securely stored elsewhere, the
backup seed secret should be deleted; see sample script cleanupBackupSeed.sh.

If the root key is lost or leaked, the backup key can be used to replace the root key; see sample script
useRootSeed.sh.

Rotating the backup seed

Similarly to the root key, the backup seed should be rotated periodically. Unlike for the root seed,
where the old root seed is stored as a previous seed secret and a new root seed secret presented
to the system, the backup seed is rotated just by creating a new backup seed. See the sample script
rotateBackupSeed.sh.

After the rotation is complete, the new backup seed should be stored securely and removed from the Black
Duck host file system.

Managing secret rotation in Kubernetes
It is good practice to rotate the root seed in use on a periodic basis according to your organization’s security
policy. In order to do this, an additional secret is necessary to perform the rotation. To rotate the root
seed, the current root seed is configured as the “previous root seed”, and a newly generated root seed is
generated and configured as the root seed. Once the system processes this configuration (specifics below),
the secrets will have been rotated.

At that point in time both the old and the new seeds are able to unlock the system contents. By default, the
new root seed will be used, allowing you to test and make sure the system is working as intended. Once
everything has been verified, you complete the rotation by removing the “previous root seed”.

Once the previous root seed is removed from the system it can no longer be used to unlock the contents of
the system and can be discarded. The new root seed is now the proper root seed which should be backed
up and secured appropriately.

The root key is used to wrap the low-level TDEKs (tenant decrypt, encrypt key) that actually encrypt and
decrypt Black Duck secrets. Periodically, at times convenient for Black Duck administrators and conforming
to user organization rules, the root key should be rotated.

The procedure to rotate the root key would be create a previous seed secret with the contents of current root
seed. Then a new root seed should be created and stored in the root seed secret.

Secret rotation in Kubernetes

For Kubernetes the three operations can be done with the Black Duck running. The Kubernetes sample
script rotateRootSeed.sh will extract the root seed into prev_root, create a new root seed and then
recreate the previous and root seeds.

Installing Black Duck SCA using Kubernetes and OpenShift • 35

5. Administrative Tasks • Passing external database credentials via Kubernetes secret

After the rotation completes the previous seed secret should be removed; see sample script
cleanupPreviousSeed.sh. Again, this cleanup can be performed on a running Kubernetes Black Duck
instance.

The state of the rotation can be tracked by looking at crypto diagnostics tab, in the user interface by going to
Admin > System Information > crypto.

Passing external database credentials via Kubernetes secret
When configuring Black Duck to use an external PostgreSQL database, you can choose to supply the
database credentials via a Kubernetes secret rather than storing them directly in the values.yaml file.
This approach enhances security by avoiding plaintext credentials in configuration files.

Using the default behavior (Helm-managed secret)

By default, the Helm chart will generate a secret named <name>-blackduck-db-creds using the values
set from adminPassword and userPassword in your values.yaml file. This behavior is controlled by
the useHelmChartDbCreds flag, which is enabled by default:

useHelmChartDbCreds: true

No additional steps are needed if you choose to continue using this method.

Providing your own database credentials secret

If you prefer to manage the credentials yourself, set useHelmChartDbCreds to false in your
values.yaml file:

useHelmChartDbCreds: false

You must then create a Kubernetes secret named <name>-blackduck-db-creds in the same
namespace as your Black Duck deployment. The secret must include the following keys:

• HUB_POSTGRES_ADMIN_PASSWORD_FILE

• HUB_POSTGRES_USER_PASSWORD_FILE

Each key should point to a file containing the corresponding password. For example:

kubectl create secret generic -n <namespace> <name>-blackduck-db-creds \
 --from-file=HUB_POSTGRES_ADMIN_PASSWORD_FILE=pg_admin_password_file \
 --from-file=HUB_POSTGRES_USER_PASSWORD_FILE=pg_user_password_file

Important: If the custom secret is invalid or missing, the deployment will fail. Helm will not fall back
to using the credentials specified in values.yaml.

Configuring custom volumes for Blackduck Storage
The storage container may be configured to use up to three (3) volumes for the storage of file based objects.
In addition, the configuration can be set up to migrate objects from one volume to another.

Why more than one volume?

By default, the storage container uses a single volume to store all objects. This volume is sized based on
typical customer usage for stored objects. As each customer is different, it may become necessary to have

36 • Installing Black Duck SCA using Kubernetes and OpenShift

5. Administrative Tasks • Configuring custom volumes for Blackduck Storage

more space available than the volume can provide. Since not all volumes are expandable, it may become
necessary to add a different, larger volume and migrate the data to the new volume.

Another reason why multiple volumes may become necessary is if the volume is hosted on a remote system
(NAS or SAN) and that remote system is due to be decommissioned. A second volume hosted on a new
system would need to be created and the content moved to it.

Configuring multiple volumes

To configure custom storage providers in Kubernetes, create an override file containing the following:

storage:
 providers:
 - name: "file-1"
 enabled: true
 index: 1
 type: "file"
 preference: 20
 readonly: false
 migrationMode: "none"
 existingPersistentVolumeClaimName: ""
 pvc:
 size: "100Gi"
 storageClass: ""
 existingPersistentVolumeName: ""
 mountPath: "/opt/blackduck/hub/uploads"
 - name: "file-2"
 enabled: true
 index: 2
 type: "file"
 preference: 10
 readonly: false
 migrationMode: "none"
 existingPersistentVolumeClaimName: ""
 pvc:
 size: "200Gi"
 storageClass: ""
 existingPersistentVolumeName: ""
 mountPath: "/opt/blackduck/hub/uploads2"
 - name: "file-3"
 enabled: false
 index: 3
 type: "file"
 preference: 30
 readonly: false
 migrationMode: "none"
 existingPersistentVolumeClaimName: ""
 pvc:
 size: "100Gi"
 storageClass: ""
 existingPersistentVolumeName: ""
 mountPath: "/opt/blackduck/hub/uploads3"

In the above override file both providers 1 and 2 are enabled with provider 2 having a higher priority (lower
preference number) and so all new content is directed there.

The possible settings for each provider are as follows:

Setting Details

name Default: none.
Valid values: any.
Notes: This is a cosmetic label to assist in
administration of these providers.

enabled Default: true for provider 1, false for others.
Valid values: true or false.

Installing Black Duck SCA using Kubernetes and OpenShift • 37

5. Administrative Tasks • Configuring custom volumes for Blackduck Storage

Setting Details
Notes: Indicates if the provider is enabled or not.

index Default: none.
Valid values: 1, 2, 3.
Notes: Indication of the provider number. The
sequence in the configuration file does not matter.

type Default: file.
Valid values: file.
Notes: "file" is the only supported provider type.

preference Default: index times 10.
Valid values: 0-999.
Notes: Sets the preference of the provider.
Providers with the highest priority (lowest preference
number) will have new content added to them.
NOTE: All provider preferences must be unique,
Two providers cannot share the same value.

readonly Default: false.
Valid values: true or false.
Notes: Indicates a provider is read-only. The highest
priority (lowest preference number) provider cannot
be read-only or the system cannot function.
A read only provider will not have the storage
volume altered by addition of data or removal of
data, however metadata in the database will be
manipulated to record object deletions and other
changes.

migrationMode Default: none.
Valid values: none, drain, delete, duplicate.
Notes: Configures the migration mode for the
provider, Details of what this mode is and how to
use it are provided in the migration section of this
document.

existingPersistentVolumeClaimName Default: "".
Valid values: any valid k8s identifier.
Notes: Allows you to specify a specific persistence
volume claim name for this volume.

pvc.size Default: none.
Valid values: any valid size.
Notes: Allows you to specify the amount of space
available to the volume.

pvc.storageClass Default: "".
Valid values: any valid k8s identifier.
Notes: Allows you to specify a specific storage class
for this volume.

pvc.existingPersistentVolumeName Default: "".
Valid values: any valid k8s identifier.

38 • Installing Black Duck SCA using Kubernetes and OpenShift

5. Administrative Tasks • Configuring custom volumes for Blackduck Storage

Setting Details
Notes: Allows you to specify a specific persistence
volume name for this volume.

mountPath Default: specific to index - see notes.
Valid values:
/opt/blackduck/hub/uploads
/opt/blackduck/hub/uploads2
/opt/blackduck/hub/uploads3
Notes:
Sets the mount point for a specific provider. A
provider with index one (1) must specify the mount
point
/opt/blackduck/hub/uploads. A provider with index
two (2) must specific the mount point
/opt/blackduck/hub/uploads2. A provider with index
three (3) must specify the mount point
/opt/blackduck/hub/uploads3

Migrating Between Volumes

With multiple volumes configured, it is possible to migrate content from one or more provider volumes
to a new provider volume. This can only be done for providers that are not the highest priority (lowest
preference). To do this, configure the volumes with one of the following migration modes. Once configured,
Black Duck needs to be restarted in order to initiate the migration which is performed by a job in the
background until it is completed.

Migration Mode Details

none Purpose: To indicate no migration is in progress.
Notes: The default migration mode.

drain Purpose: This mode moves content from the
configured provider to the highest priority (lowest
preference number) provider. Once content is
moved, it is removed immediate from the source
provider.
Notes: This is a straight move operation - adding
it to the target provider and removing it from the
source.

delete Purpose: This mode copies content from the
configured provider to the highest priority (lowest
preference number) provider. Once content is
copied, it is marked for deletion in the source
provider. The standard deletion retention periods
apply - after that period the content is removed.
Notes: This is a move that allows for the ability
for the system to be recovered from backup within
the retention window so that content in the source
provider remains viable. The default retention period
is 6 hours.

duplicate Purpose: This mode copies content from the
configured provider to the highest priority (lowest

Installing Black Duck SCA using Kubernetes and OpenShift • 39

5. Administrative Tasks • Configuring jobrunner thread pools

Migration Mode Details
preference number) provider. Once content is
copied, the source is left unaltered, including the
metadata.
Notes: After the duplicate migration, you will have
two volumes with all of the content and the metadata
in the database. If you take the next step in the
“duplicate and dump” process and unconfigure the
original volume, the files will be deleted but the
metadata will remain in the database - referencing
an unknown volume generating a warning in the
pruner jobs (a job error). To resolve the error, use
the following property to enable the pruning of the
orphaned metadata records:
storage.pruner.orphaned.data.pruning.enable=true

Configuring jobrunner thread pools
In Black Duck, there are two job pools - one that runs scheduled jobs (called the periodic pool) and one that
runs jobs that are initiated from some event, including API or user interactions (called the ondemand pool).

Each pool has two settings: max threads, and prefetch.

Max threads is the maximum number of jobs a jobrunner container can run at the same time. Adding
together periodic and ondemand max threads should never be larger than 32 as most jobs use the database
and there are at most 32 connections. It is very easy to saturate the jobrunner memory, so the default thread
counts are set very low.

Prefetch is the number of jobs each jobrunner container with grab in each round trip to the database.
Setting this higher is more efficient, but setting it lower will spread the load more evenly across multiple
jobrunners (although even load is not a design goal of jobrunner in general).

In Kubernetes, you can override the thread counts settings using the following override file:
jobrunner:
 maxPeriodicThreads: 2
 maxPeriodicPrefetch: 1
 maxOndemandThreads: 4
 maxOndemandPrefetch: 2

Configuring readiness probes
You can enable or disable the readiness probes by editing the following boolean flags in values.yaml:

enableLivenessProbe: true
enableReadinessProbe: true
enableStartupProbe: true

Configuring HUB_MAX_MEMORY setting
The configuration parameter HUB_MAX_MEMORY is automatically set for relevant containers in Kubernetes-
based deployments. The value is computed as a percentage of the memory limit, with 90% being the
default.

40 • Installing Black Duck SCA using Kubernetes and OpenShift

5. Administrative Tasks • Migrating on OpenShift with Helm

In the gen04 deployment sizings, the maxRamPercentage controls the percentage used; the values for this
setting were chosen so that HUB_MAX_MEMORY has the same values as before.

Migrating on OpenShift with Helm
If you are upgrading from a PostgreSQL 9.6-based version of Black Duck, this migration replaces the use of
a CentOS PostgreSQL container with a Black Duck-provided container. Also, the blackduck-init container is
replaced with the blackduck-postgres-waiter container.

On plain Kubernetes, the container of the upgrade job will run as root unless overridden. However, the only
requirement is that the job runs as the same UID as the owner of the PostgreSQL data volume (which is
UID=26 by default).

On OpenShift, the upgrade job assumes that it will run with the same UID as the owner of the PostgreSQL
data volume.

Provisioning JWT public/private key pairs
To enhance the security and flexibility of JWT management, our system now supports the optional
provisioning of public/private key pairs. This allows you to securely provide and manage these keys,
ensuring they are only used by the appropriate services, such as the Authentication service for private keys
and public API services for public keys.

Currently, only RSA keys (PEM encoded) are supported. Specifically, public keys must be in X.509 format,
and private keys must be in PKCS#8 format.

Creating Kubernetes secrets

1. Create Kubernetes secret (template command). Exact files must be provided for the public and private
key options.

kubectl create secret generic -n <namespace> <name>-blackduck-jwt-keypair --from-
file=JWT_PUBLIC_KEY=public_key_file --from-file=JWT_PRIVATE_KEY=private_key_file

Here is an sample command if namespace = bd and name = hub:

kubectl create secret generic -n bd hub-blackduck-jwt-keypair --from-
file=JWT_PUBLIC_KEY=public-key.pem --from-file=JWT_PRIVATE_KEY=private-key.pem

2. Confirm secret created in namespace:

kubectl get secrets -n <namespace>

The expected output would be what follows, if namespace = bd and the secret name = hub-
blackduck-jwt-keypair:

kubectl get secrets -n bd
NAME TYPE DATA AGE
hub-blackduck-jwt-keypair Opaque 2 7s

3. Uncomment the following line in values.yaml and edit name accordingly with the secret name:

jwtKeyPairSecretName: <name>-blackduck-jwt-keypair

4. Deploy Black Duck in the same namespace. For example:

Installing Black Duck SCA using Kubernetes and OpenShift • 41

5. Administrative Tasks • Enabling SCM Integration

helm install bd . --namespace bd -f values.yaml -f sizes-gen04/10sph.yaml --set
 exposedNodePort=30000 --set environs.PUBLIC_HUB_WEBSERVER_PORT=30000

Enabling SCM Integration
This feature is not enabled by default in Black Duck and must be activated by adding the feature to your
Product Registration key and then adding the following in your values.yaml file:

enableIntegration: true

Note: Black Duck does not accept self-signed certificates for SCM integrations at this time.

Configuring mTLS on an external database

Prerequisites
Before configuring mTLS for an external database in a Kubernetes deployment, ensure the following:

1. Environment setup:

• Kubernetes and Helm are installed and properly configured.

• Persistent Volumes (PV) and Persistent Volume Claims (PVC) are set up in your environment.

2. Deployment preparation:

• You have identified the correct deployment files to use and know where to download them.

• You are familiar with setting up a Black Duck deployment using an external database.

• You have the necessary commands ready for running a Black Duck deployment with an external
database.

3. mTLS requirements:

• The openssl.cnf file is available on your server for generating certificates.

• Secrets are named using the default values provided in the deployment instructions.

• Depending on your deployment, you may have up to five secrets for mTLS: root certificate, admin
certificate & key, and user certificate & key. If you are not using one or more of these, update the
corresponding entries in the values.yaml file to an empty string ("").

• Example: To configure the root certificate, update the
postgres.customCerts.rootCAKeyName field in value.yaml. By default, this is set to
"HUB_POSTGRES_CA". If you do not have a root certificate, set this value to "".

4. Namespace consistency:

• Both the Black Duck and PostgreSQL deployments use the same namespace.

Changes to your Black Duck deployment

Updating values.yaml

To configure mTLS for your Black Duck deployment, you must update the values.yaml file with the
necessary settings secrets. Follow these steps:

42 • Installing Black Duck SCA using Kubernetes and OpenShift

5. Administrative Tasks • Configuring mTLS on an external database

1. Configure postgres.sslMode

Add the postgres.sslMode configuration option to values.yaml. This option determines whether
the deployment will include certificate ane key secrets. If this option is not configured, the setenv.sh
script will exclude the cert/key secrets from the deployment. Ensure this value is set to enable mTLS.

2. Set the secret name for custom certificates

Add the postgres.customCerts.useCustomCerts option to values.yaml. This specifies the
name of the secret containing the necessary certificate and key data for connecting to the external
database (e.g., root CA, admin cert/key, and user cert/key).

3. Define custom certificate data

Under the postgres.customCerts section in values.yaml, configure the following five options to
specify the data for the certificates and keys:

• rootCAKeyName: The key name for the root CA certificate.

• clientCertName: The key name for the user certificate.

• clientKeyName: The key name for the user private key.

• adminClientCertName: The key name for the admin certificate.

• adminClientKeyName: The key name for the admin private key.

Ensure these values match the names in your secrets configuration.

Updating postgres-init.yaml

To support mTLS, the following changes are required in the postgres-init.yaml file:

1. Add volume and volume mount logic for the five new SSL secrets.

2. Include logic to set the PGSSLMODE environment variable.

3. Add logic to set the PGSSLROOTCERT environment variable.

4. Set the PGSSLCERT environment variable first based on HUB_POSTGRES_CRT and then on
HUB_ADMIN_POSTGRES_CRT. Separate if statements should be used for clarity.

5. Set the PGSSLKEY environment variable first based on HUB_POSTGRES_KEY and then on
HUB_ADMIN_POSTGRES_KEY. Separate if statements should be used for clarity.

6. Reorganize shell command logic by moving the logic for running /tmp/postgres-init/init.pgsql
and grouping it with other shell commands for improved readability.

Update environs

Add HUB_POSTGRES_ENABLE_SSL_CERT_AUTH: "true" to environs.

Update postgres.name

After starting the database pod, retrieve the host value for the pod and update the postgres.host field in
values.yaml.

Update postgres.customCerts.useCustomCerts

Update postgres.customCerts.useCustomCerts to true.

Installing Black Duck SCA using Kubernetes and OpenShift • 43

5. Administrative Tasks • Transitioning from Synopsysctl to helm chart deployments

Create the secret for certificates and keys

Use the following command to create the secret for certificates and keys:

kubectl create secret generic -n bdbd-blackduck-postgres-certificate --from-
file=HUB_POSTGRES_CA=root.crt
 --from-file=HUB_POSTGRES_CRT=blackduck_user.crt
 --from-file=HUB_POSTGRES_KEY=blackduck_user.pk8
 --from-file=HUB_ADMIN_POSTGRES_CRT=blackduck_admin.crt
 --from-file=HUB_ADMIN_POSTGRES_KEY=blackduck_admin.pk8

Transitioning from Synopsysctl to helm chart deployments
As Black Duck evolves, we are transitioning from using synopsysctl to Helm charts for managing
Kubernetes deployments. Helm charts provide a more standardized and flexible approach to deploying,
upgrading, and maintaining Black Duck in Kubernetes environments.

In this guide, we recommend a fresh installation, as upgrading existing deployments may pose risks due to
volume naming conventions and other configuration differences.

Important: Before beginning the transition process, ensure you back up your databases and any
other critical data. This step is essential to prevent data loss in case of unexpected issues arising
during the transition. Always verify the integrity of your backups before proceeding.

We strongly recommend deploying Black Duck in a test environment before proceeding with production.
This allows you to validate the process and identify potential issues. The test environment can be a
dedicated test instance or a temporary instance cloned from your production environment.

Internal or external database

If using an external database, you can configure the new installation to connect to the existing database,
provided only one Black Duck instance communicates with it at any given time. Alternatively, you can create
a new database and perform a backup and restore of your existing data.

If using an internal database, you must back up the current database and restore it to the new instance.

Transition process

1. Back up the database from the production environment.

2. Deploy a fresh installation of Black Duck using Helm in a new namespace.

Note: If using an external database, configure the new installation to point to the existing
external database during deployment.

3. Verify that the Black Duck instance is running correctly.

4. Restore the database using the production backup (for both internal or external databases).

5. Perform thorough testing to ensure functionality and data integrity.

6. If performing a dry-run, and it is successful, repeat the steps above after stopping the production
instance and updating the DNS routing or load balancer to point to the new instance.

44 • Installing Black Duck SCA using Kubernetes and OpenShift

	Contents
	Preface
	Black Duck documentation
	Customer support
	Black Duck Community
	Training
	Black Duck Statement on Inclusivity and Diversity
	Black Duck Security Commitments

	1. Installing Black Duck using Kubernetes and OpenShift
	2. Hardware requirements
	3. PostgreSQL versions
	General Migration Process

	4. Installing Black Duck using Helm
	Black Duck helm chart
	Getting started
	Configuring your Black Duck instance
	Exposing the Black Duck UI
	Installing the chart
	Uninstalling the chart
	Upgrading the chart
	Configuration parameters
	Common configuration
	Authentication pod configuration
	Binary scanner pod configuration
	BOM engine pod configuration
	CFSSL pod configuration
	Datadog pod configuration
	Documentation pod configuration
	Integration pod configuration
	Job runner pod configuration
	Logstash pod configuration
	Match engine pod configuration
	PostgreSQL pod configuration
	PostgreSQL readiness init container configuration
	PostgreSQL upgrade job configuration
	RabbitMQ pod configuration
	Redis pod configuration
	Registration pod configuration
	Scan pod configuration
	Storage pod configuration
	Webapp pod configuration
	Webserver pod configuration

	5. Administrative Tasks
	Configuring secrets encryption in Kubernetes
	Generating seeds in Kubernetes
	Configuring a backup seed
	Managing secret rotation in Kubernetes
	Passing external database credentials via Kubernetes secret
	Configuring custom volumes for Blackduck Storage
	Configuring jobrunner thread pools
	Configuring readiness probes
	Configuring HUB_MAX_MEMORY setting
	Migrating on OpenShift with Helm
	Provisioning JWT public/private key pairs
	Enabling SCM Integration
	Configuring mTLS on an external database
	Transitioning from Synopsysctl to helm chart deployments

